PERSAMAAN DAN PERTIDAKSAMAAN NILAI
MUTLAK LINIER SATU VARIABEL
Dari sudut pandang geometri, nilai mutlak dari x
ditulis | x |, adalah jarak dari x ke 0 pada garis bilangan real. Karena jarak
selalu positif atau nol maka nilai mutlak x juga selalu bernilai positif atau
nol untuk setiap x bilangan real.
Secara formal, nilai mutlak x didefinisikan dengan|x|= {x jika x ≥ 0 − x jika x < 0 |x| ={−x jika x ≥ 0 − x jika x < 0 atau
dapat pula ditulis :
| x | = -x
jika x ≥ 0
| x | = -x jika x < 0
Definisi diatas dapat kita maknai sebagai berikut :
Nilai mutlak bilangan positif atau nol adalah bilangan itu sendiri dan
nilai mutlak bilangan negatif adalah lawan dari bilangan tersebut.
Sebagai contoh:
| 7 | = 7 | 0 | = 0 | -4 | = -(-4) = 4
Jadi, jelas bahwa nilai mutlak setiap bilangan real akan selalu bernilai positif atau nol.
Persamaan √X² =x hanya bernilai benar jika x ≥ 0. Untuk x < 0, maka √X² =−x. Dapat kita tulis
√x² = x jika ≥ 0
√X²= -X jika < 0
Jika kita perhatikan, bentuk
diatas sama persis dengan definisi nilai mutlak x. Oleh karenanya, pernyataan
berikut benar untuk setiap x bilangan real.
|x|=√x²
Jika kedua ruas persamaan diatas
kita akan diperoleh :
|x|²=x²
Persamaan terakhir ini merupakan
konsep dasar penyelesaian persamaan atau pertidaksamaan nilai mutlak dengan
cara menguadratkan kedua ruas. Seperti yang kita lihat, tanda mutlak bisa
hilang jika dikuadratkan.
Namun, pada artikel ini kita akan lebih fokus pada bentuk linier, baik dari kasus ataupun solusi, tanpa melibatkan bentuk kuadrat.
Namun, pada artikel ini kita akan lebih fokus pada bentuk linier, baik dari kasus ataupun solusi, tanpa melibatkan bentuk kuadrat.
Persamaan
dan Pertidaksamaan Nilai Mutlak
Diawal telah disinggung bahwa nilai mutlak x adalah
jarak dari x ke nol pada garis bilangan real. Pernyataan inilah yang akan kita
gunakan untuk menemukan solusi dari persamaan dan pertidaksamaan nilai mutlak
dari bentuk linier.
| x | = a dengan a > 0
Persamaan
| x | = a artinya jarak dari x ke 0 sama dengan a. Perhatikan gambar berikut.Jarak -a ke 0 sama dengan jarak a ke 0, yaitu a. Pertanyaannya adalah dimana x agar jaraknya ke 0 juga sama dengan a.
Posisi x ditunjukkan oleh titik merah pada gambar diatas, yaitu x = -a atau x = a. Jelas terlihat bahwa jarak dari titik tersebut ke 0 sama dengan a. Jadi, agar jarak x ke nol sama dengan a, haruslah x = -a atau x = a.
| x | < a untuk a > 0
Pertaksamaan | x | < a, artinya jarak dari x ke 0 kurang dari a. Perhatikan gambar berikut.Posisi x ditunjukkan oleh ruas garis berwarna merah yaitu x < -a atau x > a. Jika kita ambil sebarang titik pada interval tersebut, sudah dipastikan jaraknya ke 0 lebih dari a. Jadi, agar jarak x ke nol lebih dari a, haruslah x < -a atau x > a.
Secara intuitif, uraian-uraian diatas dapat kita simpulkan sebagai berikut :
SIFAT : Untuk a > 0 berlaku
a. | x | = a ⇔ x = a atau x = -a
b. | x | < a ⇔ -a < x < a
c. | x | > a ⇔ x < -a atau x > a
Contoh 1
Tentukan himpunan penyelesaian dari |2x - 7| = 3
Jawab :
Berdasarkan sifat a :
|2x - 7| = 3 ⇔ 2x - 7 = 3 atau 2x - 7 = -3
|2x - 7| = 3 ⇔ 2x = 10 atau 2x = 4
|2x - 7| = 3 ⇔ x = 5 atau x = 2
Jadi, HP = {2, 5}.
Contoh 2
Tentukan HP dari |2x - 1| = |x + 4|
Jawab :
Berdasarkan sifat a :
|2x - 1| = |x + 4|
⇔ 2x - 1 = x + 4 atau 2x - 1 = -(x + 4)
⇔ x = 5 atau 3x = -3
⇔ x = 5 atau x = -1
Jadi, HP = {-1, 5}.
Contoh 3
Tentukan himpunan penyelesaian dari |2x - 1| < 7
Jawab :
Berdasarkan sifat b :
|2x - 1| < 7 ⇔ -7 < 2x - 1 < 7
|2x - 1| < 7 ⇔ -6 < 2x < 8
|2x - 1| < 7 ⇔ -3 < x < 4
Jadi, HP = {-3 < x < 4}.
Menggunakan Definisi untuk Menyelesaikan Persamaan dan Pertidaksamaan Nilai Mutlak
Dalam menyelesaikan persamaan dan pertaksamaan nilai mutlak bentuk linier dengan menggunakan definisi, akan sangat membantu jika bentuk |ax + b| kita jabarkan menjadi|ax + b| = ax + b jika x ≥ -b/a
|ax + b| = -(ax + b) jika x < -b/a
Untuk langkah-langkah penyelesaiannya dapat disimak pada contoh-contoh berikut.
Contoh 4
Jabarkan bentuk nilai mutlak berikut :
a. |4x - 3|
b. |2x + 8|
Jawab :
a. Untuk |4x - 3|
|4x - 3| = 4x - 3 jika x ≥ 3/4
|4x - 3| = -(4x - 3) jika x < 3/4
b. Untuk |2x + 8|
|2x + 8| = 2x + 8 jika x ≥ -4
|2x + 8| = -(2x + 8) jika x < -4
Contoh 5
Nilai x yang memenuhi persamaan |x - 2| = 2x + 1 adalah...
Jawab :
|x - 2| = x - 2 jika x ≥ 2
|x - 2| = -(x - 2) jika x < 2
Untuk x ≥ 2
|x - 2| = 2x + 1 ⇔ x - 2 = 2x + 1
|x - 2| = 2x + 1 ⇔ -x = 3
|x - 2| = 2x + 1 ⇔ x = -3
Karena x ≥ 2, maka x = -3 tidak memenuhi
Untuk x < 2
|x - 2| = 2x + 1 ⇔ -(x - 2) = 2x + 1
|x - 2| = 2x + 1 ⇔ -x + 2 = 2x + 1
|x - 2| = 2x + 1 ⇔ -3x = -1
|x - 2| = 2x + 1 ⇔ x = 1/3
Karena x < 2, maka x = 1/3 memenuhi.
Jadi, nilai x yang memenuhi persamaan diatas adalah x = 1/3.
Contoh 6
Tentukan HP dari |x + 1| > 2x - 4
Jawab :
|x + 1| = x + 1 jika x ≥ -1
|x + 1| = -(x + 1) jika x < -1
Untuk x ≥ -1
|x + 1| > 2x - 4 ⇔ x + 1 > 2x - 4
|x + 1| > 2x - 4 ⇔ -x > -5
|x + 1| > 2x - 4 ⇔ x < 5
Irisan dari x ≥ -1 dan x < 5 adalah -1 ≤ x < 5
Untuk x < -1
|x + 1| > 2x - 4 ⇔ -(x + 1) > 2x - 4
|x + 1| > 2x - 4 ⇔ -x - 1 > 2x - 4
|x + 1| > 2x - 4 ⇔ -3x > -3
|x + 1| > 2x - 4 ⇔ x < 1
Irisan dari x < -1 dan x < 1 adalah x < -1
Jadi, HP = {x < -1 atau -1 ≤ x < 5}
Jadi, HP = {x < 5}
Contoh 7
Nyatakan |x - 4| + |2x + 6| tanpa menggunakan simbol nilai mutlak
Jawab :
|x - 4| = x - 4 jika x ≥ 4
|x - 4| = -(x - 4) jika x < 4
|2x + 6| = 2x + 6 jika x ≥ -3
|2x + 6| = -(2x + 6) jika x < -3
Jika interval-interval diatas digambarkan pada garis bilangan akan diperoleh :
Untuk x < -3
|x - 4| + |2x + 6| = -(x - 4) - (2x + 6)
|x - 4| + |2x + 6| = -x + 4 - 2x - 6
|x - 4| + |2x + 6| = -3x - 2
Untuk -3 ≤ x < 4
|x - 4| + |2x + 6| = -(x - 4) + (2x + 6)
|x - 4| + |2x + 6| = -x + 4 + 2x + 6
|x - 4| + |2x + 6| = x + 10
Untuk x ≥ 4
|x - 4| + |2x + 6| = (x - 4) + (2x + 6)
|x - 4| + |2x + 6| = x - 4 + 2x + 6
|x - 4| + |2x + 6| = 3x + 2
Dari uraian diatas, kita simpulkan
Tidak ada komentar:
Posting Komentar