Turunan Fungsi Aljabar
Materi Turunan (derivatif) mencakup materi turunan fungsi aljabar, turunan fungsi trigonometri, gradien garis singgung dan persamaan garis singgung pada suatu kurva tertentu, titik stasioner, fungsi naik dan fungsi turun. Lumayan banyak juga,yah…kita coba mulai dari fungsi aljabar dulu.
Turunan fungsi didefinisikan sebagai :
Rumus-rumus Turunan :
untuk a = konstanta
- maka
- maka
- maka
jika adalah suatu fungsi
maka
maka
maka
maka
maka dinamakan aturan rantai
Jangan sampai lupa yah, setiap fungsi yang hendak diturunkan, pastikan dinyatakan dalam bentuk perpangkatan terlebih dulu, let’s cekidot …
Contoh dan pembahasan turunan fungsi:
- Tentukan turunan pertama dari :Jawab :
- Jawab :nyatakan dalam bentuk pangkat terlebih dulu menjadi maka :
3. Turunan dari adalah...
Jawab :
Misalkan :
u = (x − 1)2 ⇒ u' = 2x − 2
v = 2x + 3 ⇒ v' = 2
f '(x) = u'v + uv'
f '(x) = (2x − 2)(2x + 3) + (x − 1)2. 2
f '(x) = 4x2 + 2x − 6 + 2(x2 − 2x + 1)
f '(x) = 4x2 + 2x − 6 + 2x2 − 4x + 2
f '(x) = 6x2 − 2x − 4
f '(x) = (x − 1)(6x + 4) atau
f '(x) = (2x − 2)(3x + 2)
Jawab :
Misalkan :
u = (x − 1)2 ⇒ u' = 2x − 2
v = 2x + 3 ⇒ v' = 2
f '(x) = u'v + uv'
f '(x) = (2x − 2)(2x + 3) + (x − 1)2. 2
f '(x) = 4x2 + 2x − 6 + 2(x2 − 2x + 1)
f '(x) = 4x2 + 2x − 6 + 2x2 − 4x + 2
f '(x) = 6x2 − 2x − 4
f '(x) = (x − 1)(6x + 4) atau
f '(x) = (2x − 2)(3x + 2)
Tidak ada komentar:
Posting Komentar